ORIGINAL PAGE IS
OF POOR QUALITY

N89-19841

AN ARCHITECTURE FOR INTEGRATING DISTRIBUTED AND
COOPERATING KNOWLEDGE-BASED AIR FORCE DECISION AIDS

Richard O. Nugent

Nugent@MITRE.Arpa

Richard W. Tucker
RWTucker@MITRE.Arpa

The MITRE Corporation

Washington C31 Artificial Intelligence Technical Center
7525 Colshire Drive

McLean, Virginia

ABSTRACT

MITRE has been developing a Knowledge-Based Battle
Management Testbed for evaluating the viability of
integrating independently-developed knowledge-
based decision aids in the Air Force tactical domain.

The primary goal for the testbed architecture is to
permit a new system to be added to a testbed with little
change to the system's software. Each system that
connects to the testbed network declares that it can
provide a number of services to other systems. When
a system wants to use another system's service, it does
not address the server system by name, but instead
transmits a request to the testbed network asking for
a particular service to be performed.

A key component of the testbed architecture is a
common database which uses a relational database
management system. The RDBMS provides a database
update notification service to requesting systems.
Normally, each system is expected to monitor data
relations of interest to it. Alternatively, a system may

broadcast an announcement message to inform other
systems that an event of potential interest has
occurred.

Current research is aimed at dealing with issues
resulting from integration efforts, such as dealing
with potential mismatches of each system's assump-
tions about the common database, decentralizing

network control, and coordinating multiple agents.
INTRODUCTION

systems is a
the military.

Integrating heterogeneous software
burgconing problem, particularly for
Many independently-developed systems produced for
the military are stand-alone decision aids. This paper
describes an architecture which supports the integra-
tion of such command and control (C2) systems and
discusses the required characteristics which c¢nable
these systems to coopcratc and share information
with each other.

MITRE's Knowledge-Based Battle Management Testbed
has been the vehicle for performing experiments in

171

22102

integrating knowledge-based systems for the Rome
Air Development Center (RADC) [5]. The testbed
employs a core set of functions which provide control
mechanisms and open connectivity support, called
the knowledge-based battle management (KB-
BATMAN) shell. The type of systems for which the
testbed is intended are coarse-grained, loosely-
coupled systems. A coarse-grained system has a large
amount of functionality, and a loosely-coupled system
has a high level of independence from other systems;
such a system does not require a great decal of
communication with external agents, and can act
autonomously most of the time. A primary goal of the
testbed architecture has been to permit systems to be
able to "plug in" dynamically and even be replaceable
by systems offering similar functionality.

Three realistic Air Force tactical C2 systems operate in
the current testbed: a mission planner, a simulator,
and an intelligence analysis system. The goal of the
testbed project has been to link these three coarse-
grained systems using the KB-BATMAN Shell and to
determine what problems must be addressed to assure
cffective cooperation among them. The principal way
in which these three systems are linked is by
relaying outputs from one system, such as the
intelligence analyst, to become inputs to another
system, such as the mission planner. This concept of
integration seems simple; however, a varicty of
issues are involved, some of which have been
addressed during the testbed project.

The principal issucs that have been addressed include
how to control cooperation, how to permit commonly-
used information to bc used by several systems, and
how to deal with different views or representations of
information.

BACKGROUND AND PROBLEMS

Related Research

It is difficult to c¢valuate the effcctivencss of a
decision aid in isolation from other systems with
which it may intcract. Graham describes a model for
representing the interaction of systems with their
environment, where the cenvironment is the cssential
“"gluc” through which the systems interact [4].

Graham views the environment as one more system to
be modeled in a distributed simulation of C2 systems.

Previous MITRE work on the AirLand Loosely
Integrated Expert Systems (ALLIES) project [1]
involved integrating an Army planning system, an

intelligence analysis system, and a simulation system
into a single cooperating environment. Since these
systems were integrated after each was developed to
operate stand-alone, the methodology for integration
was ad hoc and communications required several
different protocols.

developing cooperating,
to encourage

environment for
distributed systems is essential
modularity of system design and to provide well-
defined interfaces among systems. Teknowledge, Inc.
has been developing ABE for RADC and the Defense
Advanced Research Projects Agency (DARPA) to meet
these goals [3]. ABE was not used in the testbed project

A better

because it was still under development when
evaluated.
Integration of heterogeneous decision aids requires

the fields of distributed

addressing issues involving
and knowledge-

computing, databases, networking,
based systems, among others.

Distributed Control

In any distributed environment, control of
intersystem activities may be centralized or
decentralized, or a hybrid. Centralized control is

easiest to implement, but also provides a single point
of failure, which would not be desirable in an
operational system in most cases. Decentralized
control requires fairly complex algorithms for
coordination of systems. We use centralized control in
our testbed, in part to keep the architecture simple,
and also to support monitoring of testbed com-
munications.

Common Functionality

should be
from

software components
prevent each system
becoming highly dependent on other systems, there
still is a need for sharing information that is not
specific to a single system. Two common systems have
been identified to fulfill this requirement: a Common
Database manager and a Common Knowledge Base
manager. These two componcnts are considered to be
intcgral parts of the KB-BATMAN Shell, although like
other systems in the testbed, they are modules which
can be replaced without affecting other systems.

While heterogeneous
loosely-coupled to

A relational database management system (RDBMS) is
used for the Common Databasc beccause the functional-
ity of RDBMSs are fairly standard and implcmen-
tations are available for a wide varicty of computers.
Most properly-designed dccision aids should have an

casily identifiable sect of database access functions
which may be replaced with RDBMS functions
accessing a Common Database.

When a new system is being integrated into the
testbed, it is important to determine how it uscs a

172

database. One problem is to decide which data
elements are of interest to other systems in the
testbed, and which data elements are for internal use

only. A second-order problem is to ascertain how to
translate data representations into a form that is most
appropriate for access by multiple systems, since
different systems may view the same collection of data
in different ways. Each system's view of the
organization of data must be transformed to the
Common Database's actual view. To solve this problem,
the Common Database system must be able to provide
an intelligent database viewing mechanism, in which
a database request from a system may be translated to
a combination of select, join, and project operations
in order to provide the requested view. The
alternative to providing intelligent interfaces is to
modify the internal structure of a system, which is
likely to be an undesirable option for large-scale,

coarse-grained systems.
There are further issues resulting from multiple
access to commonly-used information. One system

method of representing some
entity; for example in the testbed, one system uses
latitude and longitude to identify a ground location
whereas another system uses the universal
transverse Mercator coordinate system. Also, one
system may be interested in greater precision or
detail for some data than needed by another system.
Interpretation of uncertainty qualifications to data is
likely to be difficult or impossible to correlate
between systems.

may use a different

The Common Knowledge Base includes commonly-
needed behaviors or functionality for the Air Force
problem domain. It can be used to reduce the
duplication of effort in component systems. It can
also be used to enforce standard operating procedures
as well as Air Force doctrine. Further work remains
to be done on the Common Knowledge Base, partic-
ularly for its potential role as an overall director for a
suite of C2 systems.

Impact on Using Existing Systems

An ecarly goal of the testbed project was to address the
issue of using existing decision aid systems. It is
impractical to suggest that any existing system can be

casily adapted for integration into our testbed
architecture. Systems which were not designed with
integration in mind arc especially likely to be

difficult to adapt. It may be more cost-effective and
rcliable to reimplement a system to fit the architec-
ture than to patch existing software.,

THE KB-BATMAN SHELL ARCHITECTURE

Message Passing

Testbed components communicate with each other by
sending messages. Three types of messages are used:
a request, a reply, and a notification. A request
corresponds to a the concept of remote procedure call
from distributed computing. A reply contains data in

responsc to a request, A notification is an an-
nouncement which does not imply that a reply is
cxpected.

ORIGINAL PAGE IS
OF POOR QUALITY

Router Machine

Any Machine

System

Intertace/«

Testbed
Connection
Monitor

v

Interface

System Data,
Functions,
Processes,

Resources

A Component System

Figure 1

Processes

Multiple processes are involved in the KB-BATMAN
shell concept. The following types of processes are
used in the testbed:

« The Router
(one process)

¢ Testbed Connection Monitor
(onc process)

* Router Interfaces (RIs)
(onc per hosted system)

» System Interfaces (SIs)
(one per hosted systcm)

+ System Executors

(one per active request execution)

Figure 1 shows thc interrclationships among these

proccsses

The Router supports centralized control of
communications among hosted systems. All messages
pass through the Router. Figurc 2 depicts the star
network of systems communicating through the
Router.

A Router Interface and System Interface together
form the communications interfacec between a system
and the Router. The interface consists of two parts
because the system may cxecute on a different
computer than the Router. A system's Rl process
cxecutes on the same machine as the Router; the Si
process can operale on any computer, but typically is

associated with a machine representing the hosted
system. (A hosted system itsclf may operatc on
multiple computers). Processes on both computers
nced to poll for message arrival from cither side,

cither from the system or the Router.

173

The Testbed Connection Monitor operates on the same
computer as the Router. Its purpose is to handle
requests from systems on other machines to connect
themselves into the testbed. The Connection Monitor
asks the Router process to create an RI for the system.
The RI and SI then will open the necessary network
connections to support message passing.

Through its SI, each system declares to the Router the
services it can perform upon request. For example,
the Common Database system advertises that it will
service database access and database update notifi-
cation requests. In addition, "declare services" is a
built-in service handled by the Router.

When a system's Sl receives a request for one of its

services from another system via the Router, it
executes that request by evaluating a function
asynchronously in a separate System Executor
process. In other words, the service request can be in
execution while the SI continues to poll for further
messages; in fact, multiple service requests can be in

exccution, each in a separate System Executor process.

The Router's role is to maintain a "yellow pages" of all
declared services. It is possible that a service can be
performed by more than one system. When a system
requests an external service, its SI sends the request
to its RI which relays it to the Router. Thc Router
determines which system is most appropriate to
perform the service by selecting onc from the set of
all dcclared servers. (In the present implementation,
no criteria are applied for sclecting from multiple
Servers. Criteria might include speed of response,
accuracy of response, currency of data, etc.) The
service requester does not address its request to a
particular system; in fact, the rcquester does not
know what system, if any, will perform a service. It is
possible that a service is not supported, in which casc
the Router sends an error indication as a reply to the
requester. The Router currently does not interpret
the contents of messages.

Communications
Subnet

Hosted
System

Figure

A System Executor process is created by an SI to
perform a requested service. The System Executor can
be considered to be performing the service in the
context of the SI's system since it has access to any
functions and data of that system. System Executors
are implemented as reusable process resources on a
LISP machine, so after one completes the servicing of
a request it becomes cligible for reuse.

Consider a situation in which a service handling
system does not respond to a service request in a
timely fashion, either due to system failure or because
it is busy doing other things. The requesting system
would wait a long time or even forever unless it is
designed to monitor for replies and eventually time
out. In general, it is preferable for distributed
systems to be data-driven, responding to changes
introduced by external sources (such as other systems
or an opecrator), rather than function-driven, in
which the system asks another system to perform a
function and then waits for a response. A data-driven
system is easier to coordinate with other systems than
a function-driven one because it is rcactive rather
than dependent. Nevertheless, function-driven or
servicc-oriented systems are necessary for a varicty
of general-purposc common functions that multiple
systems may need to use, such as accessing the
Common Database and using resource managers.

Input Ports

When a message is transmitted from one tcstbed
process to another, it is stored in a process' input port.
Each process other than System Executors has one
input port, and the process may rcad messages from
the input port in any order it chooses. Presently,
most processes rcad and process all messages in a
first-in, first-out (FIFO) manncr. However, a Systcm
Exccutor process scans the contents of the input pon

174

2

of its currently associated SI for whichever replies it
is expecting. A System Exccutor does not process any
request messages, and the System Interface does not
process any reply messages. Each process which
monitors a network connection for input will copy
network input messages into "its input port for
subsequent processing.

TAC-2 APPLICATION SYSTEMS

TAC-2 is the name of the version of the testbed which
incorporates three realistic knowledge-bascd systems
in the Air Force tactical domain: a mission planning
system, an intelligence analysis system, and a simula-
tion system. These three systems were developed by
three different groups of people at different
locations. One, the planning system, was under
development prior to the initiation of TAC-2, whercas
the other two were devcloped expressly for use with
TAC-2.

The planning system used in TAC-2 is the Air Force
Mission Planning system (AMPS), which is a
successor to the KNOBS Replanning System (KRS) ({2}
which in turmn was a successor to the Knowledge Based
System (KNOBS). All of these systems have been
developed by the MITRE-Bedford Artificial Intel-
ligence Technical Center independently of the TAC-2
effort underway at the MITRE-Washington Artificial
Intelligence Technical Center. The concepts cmbod-
ied in KRS have also led to the current development of
TEMPLAR for usc as a operational system by the Air
Force.

AMPS was developed as a stand-alone system, and
nonc of the AMPS software was developed for use in
TAC-2. Howcver, onc component of AMPS, its rel-
ational database management system, was adapted for
use as part of TAC-2's Common Database system. A
number of cnhancements were mad¢ to the DBMS in

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

order to support simple methods for remote access and
update notification. The Common Database system is
used to manage data for all component systems in TAC-
2.

The intelligence system in TAC-2, INTEL, was
developed by the same staff at MITRE-Washington that
developed TAC-2 and therefore was easiest to adapt to

the conventions required for inclusion in the TAC-2
testbed.

The simulation system in TAC-2, SIMULATOR, was
developed by staff at the Rome Air Development

Center. SIMULATOR was designed to work with TAC-2,
but included some differences with the other systems
in assumptions about data. For example, SIMULATOR
assumes that location data is given in universal
transverse Mercator coordinates whereas AMPS
assumes that location data are given as lati-
tude/longitude pairs. The transformation between
the two location representations is complex. How can
systems cooperate if they have differences like this?
An intelligent interface to the Common Database must
transparently supply the correct data to each system.

These three domain systems cooperate by reading and
writing data to the Common Database. AMPS plans
offensive counter-air (OCA) missions automatically
based on target and other data present in the Common

Database, built-in planning constraints, and optional
user inputs. The Simulator simulates flying these
missions, assessing bomb damage to the targets and

loss of aircraft due to surface-to-air missiles (SAMs).

The INTEL system prioritizes targets for bombing
missions.
All TAC-2 component systems and support software

are written in LISP (both Common LISP and ZETALISP)
and run on Symbolics LISP machines. INTEL and
SIMULATOR operate in the latest version of the
operating system software, whereas AMPS executes in
an earlier version. The KB-BATMAN shell software
and the Common Database system software opecrate in
both versions, wusing the same source code.
Communications between LISP machines employs
generic networking software, and can use either
TCP/IP or Chaosnet protocols for transmission of
messages between a system and the KB-BATMAN
Router. TAC-2 can operate on as many as five
computers, with each of the Router, Common Database,
AMPS, INTEL, and SIMULATOR on a scparatec computer;
or as few as two, with AMPS on one computer and the
others all on another computer.

SUMMARY AND CONCLUSIONS
The KB-BATM AN Shell

architecture provides support

for integrating coarse-grained knowledge-based de-
cision aids. The most important aspect of the
architecture is the cmphasis on maintaining indepen-
dence of systems. Indcpendent systems can be
considered more managcable and robust than systems
that rely on other systems for control dircctives.
Independence is encouraged through the wuse of
intersystem messages which are not addressed to
specific systems. Instcad, messages are either

service-oriented, to be relayed by a Router to a system
which supports the service, or broadcast into the
environment for all systems to examine. A message
may be nothing more than a piece of data in a shared
Common Database, in which case system control is
totally data-driven.

the architecture is the use of
intelligent interfaces to systems. Intelligent inter-
faces can be used to adapt data from the external
environment (e.g., the Common Databasc) to be in a
form suitable for internal system use. These
interfaces may need to employ knowledge-based
techniques for transforming data from a common
representation to a specialized one used within the
system. If necessary, an interface can interact with
the environment and other systems in order to
support its system's needs.

Another key aspect of

Further work is required to address issue areas such
as decentralizing control away from a single Router
and supporting component connectivitics other than
a star nctwork. The Router nceds to be cxtended to
permit servers to provide qualifications for providing
a service, and on the other end, to permit servers to
be able to preview a request to determine whether it
is interested in servicing it. The latter improvement

would be necessary for a totally decentralized control

mechanism such as contract nets, in which systems
bid on service requests.
ACKNOWLEDGMENTS
This document was completed under Air Force

Contract F19628-86-C-0001 in support of the Rome Air
Dcvelopment Center, Griffiss Air Force Base, New
York.

REFERENCES

1. Benoit, John W. et al., AirLand Loosely Integrated
Expert Systems: The ALLIES Project, MTR-86W00041,
The MITRE Corporation, McLean VA, April 1986.

2. Dawson, Bruce C., Richard H. Brown, Candace E.
Kalish, and Stuart Goldkind, Knowledge-Based Replan-
ning System, RADC-TR-87-60, Rome Air Dcvelopment
Center, Griffiss Air Force Base NY, May 1987.

3. Erman, Lee D., Jay S. Lark, and Frederick Hayes-
Roth, Engineering [Intelligent Systems: Progress
Report on ABE, TTR-ISE-86-102, Tcknowledge, Inc.,
Palo Alto CA, May 1986.

4. Graham, Richard A., An Environment for
Distributed Simulation of Command and Control
Nerworks, Master of Scicnce Thesis, Naval Postgrad-

uatec School, Montercy CA, March 1983.

5. Morawski, Paul E., Richard O. Nugent, and Richard
W. Tucker, TAC-/: A Knowledge-Based Air Force
Tactical Battle Management Testhed, MTR-87W00171,
The MITRE Corporation, McLean VA, September 1087,

